Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 16(4): 573-605, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355216

RESUMEN

BACKGROUND AND AIMS: Gut functions including motility, secretion, and blood flow are largely controlled by the enteric nervous system. Characterizing the different classes of enteric neurons in the human gut is an important step to understand how its circuitry is organized and how it is affected by disease. METHODS: Using multiplexed immunohistochemistry, 12 discriminating antisera were applied to distinguish different classes of myenteric neurons in the human colon (2596 neurons, 12 patients) according to their chemical coding. All antisera were applied to every neuron, in multiple layers, separated by elutions. RESULTS: A total of 164 combinations of immunohistochemical markers were present among the 2596 neurons, which could be divided into 20 classes, with statistical validation. Putative functions were ascribed for 4 classes of putative excitatory motor neurons (EMN1-4), 4 inhibitory motor neurons (IMN1-4), 3 ascending interneurons (AIN1-3), 6 descending interneurons (DIN1-6), 2 classes of multiaxonal sensory neurons (SN1-2), and a small, miscellaneous group (1.8% of total). Soma-dendritic morphology was analyzed, revealing 5 common shapes distributed differentially between the 20 classes. Distinctive baskets of axonal varicosities surrounded 45% of myenteric nerve cell bodies and were associated with close appositions, suggesting possible connectivity. Baskets of cholinergic terminals and several other types of baskets selectively targeted ascending interneurons and excitatory motor neurons but were significantly sparser around inhibitory motor neurons. CONCLUSIONS: Using a simple immunohistochemical method, human myenteric neurons were shown to comprise multiple classes based on chemical coding and morphology and dense clusters of axonal varicosities were selectively associated with some classes.


Asunto(s)
Sistema Nervioso Entérico , Plexo Mientérico , Humanos , Sistema Nervioso Entérico/metabolismo , Neuronas Aferentes/metabolismo , Neuronas Motoras/metabolismo , Colon/inervación
2.
Neurogastroenterol Motil ; 35(4): e14538, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36740821

RESUMEN

BACKGROUND: Ex vivo intracellular recordings and dye fills, combined with immunohistochemistry, are a powerful way to analyze the enteric nervous system of laboratory animals. METHODS: Myenteric neurons were recorded in isolated specimens of human colon. A key determinant of successful recording was near-complete removal of circular muscle from the surface of ganglia. KEY RESULTS: Treatment with a collagenase/neutral protease mix before dissection significantly improved recording success and reduced damage to the plexus. Carboxyfluorescein in microelectrodes allowed recorded neurons to be routinely labeled, analyzed, and subjected to multi-layer immunohistochemistry. Carboxyfluorescein revealed morphological details that were not detected by immunohistochemical methods. Of 54 dye-filled myenteric neurons (n = 22), 45 were uni-axonal and eight were multi-axonal. There was a significant bias toward recordings from large neural somata. The close association between morphology and electrophysiology (long after-hyperpolarizations and fast EPSPs) seen in mice and guinea pigs did not hold for human myenteric neuron recordings. No slow EPSPs were recorded; however, disruption to the myenteric plexus during dissection may have led the proportion of cells receiving synaptic potentials to be underestimated. Neurons immunoreactive for nitric oxide synthase were more excitable than non-immunoreactive neurons. Distinctive grooves were observed on the serosal and/or mucosal faces of myenteric neurons in 3D reconstructions. These had varicose axons running through them and may represent a preferential site of synaptic inputs. CONCLUSIONS: Human enteric neurons share many features with laboratory animals, but the combinations of features in individual cells appear more variable.


Asunto(s)
Plexo Mientérico , Neuronas , Humanos , Ratones , Animales , Cobayas , Electrofisiología , Neuronas/fisiología , Fluoresceínas , Plexo Mientérico/fisiología , Colon/fisiología
3.
Front Neurosci ; 17: 1313057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292899

RESUMEN

Background and Aims: Viscerofugal neurons (VFNs) have cell bodies in the myenteric plexus and axons that project to sympathetic prevertebral ganglia. In animals they activate sympathetic motility reflexes and may modulate glucose metabolism and feeding. We used rapid retrograde tracing from colonic nerves to identify VFNs in human colon for the first time, using ex vivo preparations with multi-layer immunohistochemistry. Methods: Colonic nerves were identified in isolated preparations of human colon and set up for axonal tracing with biotinamide. After fixation, labeled VFN cell bodies were subjected to multiplexed immunohistochemistry for 12 established nerve cell body markers. Results: Biotinamide tracing filled 903 viscerofugal nerve cell bodies (n = 23), most of which (85%) had axons projecting orally before entering colonic nerves. Morphologically, 97% of VFNs were uni-axonal. Of 215 VFNs studied in detail, 89% expressed ChAT, 13% NOS, 13% calbindin, 9% enkephalin, 7% substance P and 0 of 123 VFNs expressed CART. Few VFNs contained calretinin, VIP, 5HT, CGRP, or NPY. VFNs were often surrounded by dense baskets of axonal varicosities, probably reflecting patterns of connectivity; VAChT+ (cholinergic), SP+ and ENK+ varicosities were most abundant around them. Human VFNs were diverse; showing 27 combinations of immunohistochemical markers, 4 morphological types and a wide range of cell body sizes. However, 69% showed chemical coding, axonal projections, soma-dendritic morphology and connectivity similar to enteric excitatory motor neurons. Conclusion: Viscerofugal neurons are present in human colon and show very diverse combinations of features. High proportions express ChAT, consistent with cholinergic synaptic outputs onto postganglionic sympathetic neurons in prevertebral ganglia.

4.
Adv Exp Med Biol ; 1383: 89-103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587149

RESUMEN

The autonomic nervous system that regulates the gut is divided into sympathetic (SNS), parasympathetic (PNS), and enteric nervous systems (ENS). They inhibit, permit, and coordinate gastrointestinal motility, respectively. A fourth pathway, "extrinsic sensory neurons," connect gut to the central nervous system, mediating sensation. The ENS resides within the gut wall and its activities are critical for life; ENS failure to populate the gut in development is lethal without intervention."Viscerofugal neurons" are a distinctive class of enteric neurons, being the only type that escapes the gut wall. They form a unique circuit: their axons project out of the gut wall and activate sympathetic neurons, which then project back to the gut, and inhibit gut movements.For 80 years viscerofugal/sympathetic circuits were thought to have a restricted role, mediating simple sensory-motor reflexes. New data shows viscerofugal and sympathetic neurons behaving unexpectedly, compelling a re-evaluation of these circuits: both viscerofugal and sympathetic neurons transmit higher order, synchronized firing patterns that originate within the ENS. This identifies them as driving long-range motility control between different gut regions.There is need for gut motor control over distances beyond the range of ENS circuits, yet no mechanism has been identified to date. The entero-sympathetic circuits are ideally suited to meet this need. Here we provide an overview of the structure and functions of these peripheral sympathetic circuits, including new data showing the firing patterns generated by enteric networks can transmit through sympathetic neurons.


Asunto(s)
Sistema Nervioso Entérico , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Autónomo , Sistema Nervioso Simpático , Células Receptoras Sensoriales , Sistema Nervioso Central
5.
J Comp Neurol ; 530(18): 3209-3225, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36043843

RESUMEN

Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 µm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Plexo Mientérico , Ratones , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Periferinas/metabolismo , Neuronas/metabolismo , Colon , Óxido Nítrico Sintasa/metabolismo , Colchicina/metabolismo
6.
J Neuroinflammation ; 18(1): 168, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34332596

RESUMEN

BACKGROUND: Following stroke, changes in neuronal connectivity in tissue surrounding the infarct play an important role in both spontaneous recovery of neurological function and in treatment-induced improvements in function. Microglia and astrocytes influence this process through direct interactions with the neurons and as major determinants of the local tissue environment. Subpopulations of peri-infarct glia proliferate early after stroke providing a possible target to modify recovery. Treatment with cell cycle inhibitors can reduce infarct volume and improve functional recovery. However, it is not known whether these inhibitors can influence neurological function or alter the responses of peri-infarct glia without reducing infarction. The present study aimed to address these issues by testing the effects of the cell cycle inhibitor, olomoucine, on recovery and peri-infarct changes following photothrombotic stroke. METHODS: Stroke was induced by photothrombosis in the forelimb sensorimotor cortex in Sprague-Dawley rats. Olomoucine was administered at 1 h and 24 h after stroke induction. Forelimb function was monitored up to 29 days. The effects of olomoucine on glial cell responses in peri-infarct tissue were evaluated using immunohistochemistry and Western blotting. RESULTS: Olomoucine treatment did not significantly affect maximal infarct volume. Recovery of the affected forelimb on a placing test was impaired in olomoucine-treated rats, whereas recovery in a skilled reaching test was substantially improved. Olomoucine treatment produced small changes in aspects of Iba1 immunolabelling and in the number of CD68-positive cells in cerebral cortex but did not selectively modify responses in peri-infarct tissue. The content of the astrocytic protein, vimentin, was reduced by 30% in the region of the lesion in olomoucine-treated rats. CONCLUSIONS: Olomoucine treatment modified functional recovery in the absence of significant changes in infarct volume. The effects on recovery were markedly test dependent, adding to evidence that skilled tasks requiring specific training and general measures of motor function can be differentially modified by some interventions. The altered recovery was not associated with specific changes in key responses of peri-infarct microglia, even though these cells were considered a likely target for early olomoucine treatment. Changes detected in peri-infarct reactive astrogliosis could contribute to the altered patterns of functional recovery.


Asunto(s)
Astrocitos/efectos de los fármacos , Cinetina/farmacología , Microglía/efectos de los fármacos , Corteza Motora/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/fisiopatología , Animales , Ciclo Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Gliosis/patología , Gliosis/fisiopatología , Masculino , Microglía/patología , Corteza Motora/patología , Corteza Motora/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología
7.
Cell Transplant ; 30: 963689720984437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33432826

RESUMEN

Dental pulp contains multipotent mesenchymal stem cells that improve outcomes when administered early after temporary middle cerebral artery occlusion in rats. To further assess the therapeutic potential of these cells, we tested whether functional recovery following stroke induced by photothrombosis could be modified by a delayed treatment that was initiated after the infarct attained maximal volume. Photothrombosis induces permanent focal ischemia resulting in tissue changes that better reflect key aspects of the many human strokes in which early restoration of blood flow does not occur. Human dental pulp stem cells (approximately 400 × 103 viable cells) or vehicle were injected into the infarct and adjacent brain tissue of Sprague-Dawley rats at 3 days after the induction of unilateral photothrombotic stroke in the sensorimotor cortex. Forepaw function was tested up to 28 days after stroke. Cellular changes in peri-infarct tissue at 28 days were assessed using immunohistochemistry. Rats treated with the stem cells showed faster recovery compared with vehicle-treated animals in a test of forelimb placing in response to vibrissae stimulation and in first attempt success in a skilled forelimb reaching test. Total success in the skilled reaching test and forepaw use during exploration in a Perspex cylinder were not significantly different between the 2 groups. At 28 days after stroke, rats treated with the stem cells showed decreased immunolabeling for glial fibrillary acidic protein in tissue up to 1 mm from the infarct, suggesting decreased reactive astrogliosis. Synaptophysin, a marker of synapses, and collagen IV, a marker of capillaries, were not significantly altered at this time by the stem-cell treatment. These results indicate that dental pulp stem cells can accelerate recovery without modifying initial infarct formation. Decreases in reactive astrogliosis in peri-infarct tissue could have contributed to the change by promoting adaptive responses in neighboring neurons.


Asunto(s)
Astrocitos/metabolismo , Pulpa Dental/metabolismo , Recuperación de la Función/fisiología , Trasplante de Células Madre/métodos , Células Madre/metabolismo , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
8.
J Neuroinflammation ; 16(1): 6, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626393

RESUMEN

BACKGROUND: Altered neuronal connectivity in peri-infarct tissue is an important contributor to both the spontaneous recovery of neurological function that commonly develops after stroke and improvements in recovery that have been induced by experimental treatments in animal models. Microglia and astrocytes are primary determinants of the environment in peri-infarct tissue and hence strongly influence the potential for neuronal plasticity. However, the specific roles of these cells and the timing of critical changes in their function are not well understood. Minocycline can protect against ischemic damage and promote recovery. These effects are usually attributed, at least partially, to the ability of this drug to suppress microglial activation. This study tested the ability of minocycline treatment early after stroke to modify reactive responses in microglia and astrocytes and improve recovery. METHODS: Stroke was induced by photothrombosis in the forelimb sensorimotor cortex of Sprague-Dawley rats. Minocycline was administered for 2 days after stroke induction and the effects on forelimb function assessed up to 28 days. The responses of peri-infarct Iba1-positive cells and astrocytes were evaluated using immunohistochemistry and Western blots. RESULTS: Initial characterization showed that the numbers of Iba1-positive microglia and macrophages decreased in peri-infarct tissue at 24 h then increased markedly over the next few days. Morphological changes characteristic of activation were readily apparent by 3 h and increased by 24 h. Minocycline treatment improved the rate of recovery of motor function as measured by a forelimb placing test but did not alter infarct volume. At 3 days, there were only minor effects on core features of peri-infarct microglial reactivity including the morphological changes and increased density of Iba1-positive cells. The treatment caused a decrease of 57% in the small subpopulation of cells that expressed CD68, a marker of phagocytosis. At 7 days, the expression of glial fibrillary acidic protein and vimentin was markedly increased by minocycline treatment, indicating enhanced reactive astrogliosis. CONCLUSIONS: Early post-stroke treatment with minocycline improved recovery but had little effect on key features of microglial activation. Both the decrease in CD68-positive cells and the increased activation of astrogliosis could influence neuronal plasticity and contribute to the improved recovery.


Asunto(s)
Astrocitos/efectos de los fármacos , Infarto Encefálico , Microglía/efectos de los fármacos , Minociclina/uso terapéutico , Recuperación de la Función/efectos de los fármacos , Accidente Cerebrovascular/complicaciones , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Infarto Encefálico/tratamiento farmacológico , Infarto Encefálico/etiología , Infarto Encefálico/patología , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Miembro Anterior/fisiopatología , Trombosis Intracraneal/complicaciones , Masculino , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Factores de Tiempo
9.
Neurochem Int ; 107: 88-103, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28057555

RESUMEN

Alterations in neuronal connectivity, particularly in the "peri-infarct" tissue adjacent to the region of ischemic damage, are important contributors to the spontaneous recovery of function that commonly follows stroke. Peri-infarct astrocytes undergo reactive astrogliosis and play key roles in modulating the adaptive responses in neurons. This reactive astrogliosis shares many features with that induced by other forms of damage to the central nervous system but also differs in details that potentially influence neurological recovery. A subpopulation of astrocytes within a few hundred micrometers of the infarct proliferate and are centrally involved in the development of the glial scar that separates the damaged tissue in the infarct from surrounding normal brain. The intertwined processes of astrocytes adjacent to the infarct provide the core structural component of the mature scar. Interventions that cause early disruption of glial scar formation typically impede restoration of neurological function. Marked reactive astrogliosis also develops in cells more distant from the infarct but these cells largely remain in the spatial territories they occupied prior to stroke. These cells play important roles in controlling the extracellular environment and release proteins and other molecules that are able to promote neuronal plasticity and improve functional recovery. Treatments manipulating aspects of reactive astrogliosis can enhance neuronal plasticity following stroke. Optimising these treatments for use in human stroke would benefit from a more complete characterization of the specific responses of peri-infarct astrocytes to stroke as well as a better understanding of the influence of other factors including age, sex, comorbidities and reperfusion of the ischemic tissue.


Asunto(s)
Astrocitos/metabolismo , Gliosis/metabolismo , Recuperación de la Función/fisiología , Accidente Cerebrovascular/metabolismo , Animales , Astrocitos/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Gliosis/patología , Humanos , Accidente Cerebrovascular/patología
10.
Diabetes Care ; 32(11): 2084-6, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19675197

RESUMEN

OBJECTIVE: Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), and l-arginine directly influence nitric oxide production. Our objective was to test whether serum ADMA, SDMA, or l-arginine levels correlate with diabetic retinopathy subtype or severity. RESEARCH DESIGN AND METHODS: A total of 162 subjects with type 1 diabetes and 343 with type 2 diabetes, of whom 329 subjects had no diabetic retinopathy, 27 had nonproliferative diabetic retinopathy (NPDR), 101 had proliferative diabetic retinopathy (PDR), and 107 had clinically significant macular edema (CSME), were recruited. Blinding diabetic retinopathy was defined as severe NPDR, PDR, or CSME. Serum ADMA, SDMA, and l-arginine concentrations were determined by mass spectroscopy. RESULTS: In multivariate analysis, blinding diabetic retinopathy, PDR, and nephropathy were associated with significantly increased serum levels of ADMA (P < 0.001), SDMA (P < 0.001), and l-arginine (P = 0.001). Elevated ADMA (P < 0.001) and SDMA (P < 0.001) were also significantly associated with CSME. CONCLUSIONS: Severe forms of diabetic retinopathy are associated with elevated serum ADMA, SDMA, and l-arginine. Further investigation is required to determine whether these findings are of clinical relevance.


Asunto(s)
Arginina/análogos & derivados , Retinopatía Diabética/sangre , Propano/análogos & derivados , Antracenos/química , Arginina/sangre , Arginina/química , Biomarcadores/sangre , Ceguera/epidemiología , Ceguera/etiología , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/complicaciones , Retinopatía Diabética/fisiopatología , Humanos , Modelos Moleculares , Análisis Multivariante , Propano/sangre , Propano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...